				[Total: 9]
		(iii)	higher temperature increase OR calculate mean of (100) readings small measurements less accurate owtte	M1 A1
		(ii)	thermal energy transferred to something specific e.g. air/tube/stopper/thermometer/surroundings/environment OR small spheres lost before/after weighing OR not all the spheres fall the same distance	В1
	(b)	(i)	initial temperature (of metal) OR final temperature (of metal) OR temperature change (of metal)	B1
		(ii)	(k.e. OR 2.7 =) $\frac{1}{2}mv^2$ OR $\frac{1}{2} \times 0.15v^2$ (v^2 =) 36 6.0 m/s	C1 C1 A1
2	(a	(i)	(g.p.e. =) mgh OR $0.15 \times 10 \times 1.8$ 2.7 J ignore minus sign	C1 A1
				[Total: 8]
			consistent with above mark: in magnetic field / between magnetic poles / cutting magnetic field OR in coil/near wire	В1
	(c)		rotation/movement of wire/coil OR rotation/movement of magnet	B1
	(b)		use of $\rho = m \div V$ in any form OR $m \div V$ ($\rho = 6.72 \div 5.6 =)$ 1.2 kg/m ³	C1 A1
			0.08 × candidate's (a)(i) correctly evaluated	A1
		(ii)	efficiency = output (power) ÷ input (power) OR <u>useful power</u> ÷ input (power)	C1
1	(a	(i)	KE = $\frac{1}{2}mv^2$ in any form OR $\frac{1}{2}mv^2$ (KE = 24.5 × 6.7 =) 164 J OR 160 J	C1 A1

(a (i) 1. (loss of P.E. =) $mgh OR 92 \times 10 \times 1500$ C1 3 $1.38 \times 10^{6} \, \text{J}$ Α1 correct use of mgh with h = 500 or 2000 gains 1 mark only (ii) 2. (K.E. =) $\frac{1}{2} mv^2$ OR $\frac{1}{2} \times 92 \times 52^2$ C1 1.244×10^5 J at least 2 sig. figs Α1 (a) (difference is due to: (work done in overcoming) air resistance/drag OR energy converted to/lost as heat (by air resistance/drag) **B1** (b) increases **B1** (ii) 920 N **B1** [Total 7] (a) (i) $(m =) \rho V OR 1000 \times 1.8 \times 10^6$ C1 $1.8 \times 10^{9} \text{kg}$ (ii) (g.p.e. =)mgh OR $1.8 \times 10^9 \times 10 \times 350$ (e.c.f. from (a)(i)) С $6.3 \times 10^{12} \text{ J (e.c.f. from (a)(i))}$ Α (iii) $(P =)E/t \text{ OR } 6.3 \times 10^{12}/7 \text{ OR } 6.3 \times 10^{12}/(7 \times 60) \text{ OR } 6.3 \times 10^{12}/(7 \times 3600)$ C1 (ecf from (a)(i)(ii)) $2.5 \times 10^8 \text{ W (e.c.f. from (a)(i)(ii))}$ Α continuously regenerated / not used up / everlasting supply (b) IGNORE used again / recycled / can be renewed **B1** (ii) any two of: biomass/geothermal/solar/ tidal/wave/wind energy/wood (NOT nuclear/light) [9]

5 (a (i) (gravitational) potential energy to kinetic energy **B1** В1 (ii) chemical energy to (gravitational) potential energy reference in (i) or (ii) to heat/thermal/internal energy produced OR work done against air resistance or friction **B1 (b) (i)** (K.E. =) $\frac{1}{2}mv^2$ OR $0.5 \times 940 \times 16^2$ C1 1.2×10^5 J Α (ii) in words or symbols $Q = mc\theta$ OR $\theta = Q/mc$ C1 $1.203 \times 10^5 = 4.5 \times 520 \times \theta$ OR $\theta = 1.203 \times 10^5 / (4.5 \times 520)$ C1 51°C or K **A1** [Total: 8] (a (W.D. =) $F \times d$ or 640×3.5 C1 6 2240 J to 2 or more sig. figs. A1 [2] С (b) $(E =) VIt \text{ or } 75 \times 25 \times 4.0 \text{ or } 75 \times 100 \text{ (accept } (E =) VQ \text{ and } Q = It)$ 7500 J **A1** [(ii) (efficiency =) $\frac{\text{(useful)energy output}}{\text{energy input}}$ (× 100%) or 2240/7500 C1 (accept power for energy) (e.c.f. from 3(a)(i) or 3(b)(i)) 0.3 or 0.30 or 0.299 or 30% or 29.9% (e.c.f. from 3(a)(i) or 3(b)(i)) **A1** (c) any two from: electrical heating friction W.D. lifting suppor sound B2 [2] [Total: 8]